5.14 Workflow Examples
This chapter provides multiple complete workflow examples to help you quickly understand real-world applications of Pop Workflows.
All examples can be directly reproduced or used as templates for your own business processes.
This chapter includes:
- Document analysis and summary generation
- Chart generation (data → visualization)
- Automated knowledge base construction
- Automated report generation (PDF/Excel)
- Web content extraction and processing
- AI content enhancement (translation, refinement, structuring)
📄 Example 1: Batch Document Summary Generation
Input multiple documents → Output summary list → Render with Layout components
🎯 Use Case
- Reading a batch of documents takes too much time
- Summaries need to follow a unified structure
- Results may need to be exported for further processing
🔧 Nodes Used
- File Read
- LLM (AI Text Generation)
- Loop
- Merge
- Output
🧩 Workflow Design
[Input: files]
↓
[Loop over files]
↓ For each file:
[Read File → Extract Text]
↓
[AI Summary]
↓
[Merge All Results]
↓
[Output: summary_list]
📝 Example Output Structure
[
{
"filename": "meeting-notes.pdf",
"summary": "This meeting discussed…"
},
{
"filename": "sales-data.docx",
"summary": "This quarter’s sales performance…"
}
]
🎨 Layout Display
- Left: File upload
- Center: Run button
- Right: Summary list (Table + Text)
📊 Example 2: Data → Chart Visualization
Input structured data → AI identifies chart type → Output chart data for front-end rendering
🎯 Use Case
- Need quick visualization of business data
- Prefer AI to auto-determine chart type
🔧 Nodes Used
- Text Input / File Upload
- LLM
- PSL (data transformation)
- Output
🧩 Workflow Design
[Input: data_json]
↓
[AI: Identify chart type & X/Y fields]
↓
[Script: Convert to chart.js structure]
↓
[Output: chart_data]
📝 Sample AI Output
{
"chart": "line",
"x": "date",
"y": "value"
}
🎨 Layout Rendering
Bind to chart component:
{{workflow.outputs.chart_data}}
📚 Example 3: Automated Knowledge Base Construction (Documents → Chunks → Index)
Upload documents → Auto-split into chunks → Write to Solr / vector DB → Build KB
🎯 Use Case
- Automate KB ingestion
- Batch import PDF, DOCX, TXT
- Produce searchable chunks
🔧 Nodes Used
- File Read
- Text Split
- Embedding
- Solr / Vector DB Write
- Loop / Merge
🧩 Workflow Diagram
[Input: files]
↓
[Loop]
↓
[Read File → Extract Text]
↓
[Split into Chunks]
↓
[Embedding]
↓
[Index Write]
↓
[Merge Index Result]
📝 Output
{
"imported": 128,
"failed": 0
}
🧾 Example 4: Automated Report Generation (PDF/Excel)
Input data → AI generates content → Output PDF/Excel → User downloads file
🎯 Use Case
- Weekly/monthly reports
- Operational analysis documents
- Automatically generate shareable files
🔧 Nodes Used
- AI content generation
- Template formatting
- PDF Generator
- Excel Generator
- File output
🧩 Workflow Design
[Input: structured_data]
↓
[AI: Generate report content]
↓
[Script: Format data]
↓
[PDF Generator / Excel Generator]
↓
[Output: file_url]
📝 Output Example
/downloads/report_20240215.pdf
🌐 Example 5: Web Content Extraction & Processing
Input URL → Fetch webpage → Clean text → AI extracts key information
🔧 Nodes Used
- HTTP Request
- Regex Processing
- PSL for text cleaning
- AI Extraction
- Output
🧩 Workflow
[Input: url]
↓
[HTTP GET]
↓
[Clean HTML]
↓
[AI Extract]
↓
[Output: structured_info]
Sample Output
{
"title": "OpenAI Releases New Model",
"points": [
"2x performance improvement",
"Faster inference",
"New voice input support"
]
}
✨ Example 6: AI Content Enhancement (Translation, Enhancement, Correction)
Workflow
[Input: text]
↓
[AI: Correct → Improve → Translate]
↓
[Output: enhanced_text]
Available styles include:
- Business American English
- Academic writing
- Friendly customer service tone
- Technical expert tone
🎯 Summary
This chapter covers:
- Documents
- Charts
- Knowledge bases
- Reports
- AI content enhancement
- Web data extraction
These examples demonstrate Pop Workflow’s versatility—from automation to hybrid AI scenarios—all built through low-code construction.